
International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Achieving a Real Multitasking, Multiprocessing

and Multithreading by using Monitors.

Abstract

Any object or thing in computer has its own “Monitor” So at a time
only one task (program, process, or thread) can enter into monitor. So
point to discuss is, at the depth or by looking from monitors view
Where is the Multitasking (Multiprogramming, Multiprocessing,
Multithreading)????? Even though there are DUAL Core Processors.
So this paper discusses how we can achieve a real Multitasking,
Multiprocessing & Multithreading by creating and maintaining number
of monitors.

General Terms

Parallel Computing, MultiCore Processor etc.

Keywords
Multitasking, Multiprocessing and Multithreading, Monitors, Object,
Semaphore, Mutex.

1. Introduction

Today, a large number of software solutions are

multi-threaded. Many of our desktop applications, such as

word processors and web browsers, require multiple tasks

executing concurrently to implement a seamless solution.

Company services, such as purchasing or scheduling, use

web-based, multi-tier solutions that must scale to allow

millions of simultaneous users to perform transactions that

access shared data. Though multi-threading enable the

creation of complex systems, it introduces complexities in

their development. When multiple threads are executed

within a system, the execution order and time allotted for

each is non-deterministic. As a result, they may display

different behaviors from execution to execution. This non-

determinism must be managed by means of thread

synchronization to ensure that threads behave as expected.

One of the strengths of the programming language Java

is its support for multithreading. This support centers on

synchronization i.e.:- coordinating activities & data access

among multiple threads. The mechanism used to support

synchronization can be Monitor, Semaphore, Mutex and so

on.

2. Monitors

A monitor is like a building that contains one

special room that can be occupied by only one thread at a

time. The room usually contains some data. From the time a

thread enters this room to the time it leaves, it has exclusive

access to any data in the room. Entering the monitor

building is called "entering the monitor." Entering the

special room inside the building is called "acquiring the

monitor." Occupying the room is called "owning the

monitor," and leaving the room is called "releasing the

monitor." Leaving the entire building is called "exiting the

monitor." In addition to being associated with a bit of data,

a monitor is associated with one or more bits of code, which

in this paper will be called monitor regions. A monitor

region is code that needs to be executed as one indivisible

operation with respect to a particular monitor.

Why monitors?

 Concurrency has always been an OS issue

o Resource allocation is necessary among

competing processes

o Timer interrupts

 Existing synchronization mechanisms

(semaphores, locks) are subject to hard-to-find,

subtle bugs.

One thread must be able to execute a monitor

region from beginning to end without another thread

concurrently executing a monitor region of the same

monitor. A monitor enforces this one-thread-at-a-time

execution of its monitor regions. The only way a thread can

enter a monitor is by arriving at the beginning of one of the

monitor regions associated with that monitor. The only way

a thread can move forward and execute the monitor region

is by acquiring the monitor. When a thread arrives at the

beginning of a monitor region, it is placed into an entry set

for the associated monitor. The entry set is like the front

hallway of the monitor building. If no other thread is

waiting in the entry set and no other thread currently owns

the monitor, the thread acquires the monitor and continues

executing the monitor region. When the thread finishes

executing the monitor region, it exits (and releases) the

monitor.

The synchronization supported by monitors is

cooperation are mutual exclusion and Cooperation. Mutual

exclusion helps keep threads from interfering with one

another while sharing data, cooperation helps threads to

work together towards some common goal.

Cooperation is important when one thread needs

some data to be in a particular state and another thread is

Mr. M. S. Sonawane

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

responsible for getting the data into that state. For example,

one thread, a "read thread," may be reading data from a

buffer that another thread, a "write thread," is filling. The

read thread needs the buffer to be in a "not empty" state

before it can read any data out of the buffer. If the read

thread discovers that the buffer is empty, it must wait. The

write thread is responsible for filling the buffer with data.

Once the write thread has done some more writing, the

read thread can do some more reading. The form of

monitor used by the Java virtual machine is called a "Wait

and Notify" monitor. (It is also sometimes called a "Signal

and Continue" monitor.) In this kind of monitor, a thread

that currently owns the monitor can suspend itself inside

the monitor by executing a wait command. When a thread

executes a wait, it releases the monitor and enters a wait set.

The thread will stay suspended in the wait set until some

time after another thread executes a notify command inside

the monitor. When a thread executes a notify, it continues

to own the monitor until it releases the monitor of its own

accord, either by executing a wait or by completing the

monitor region. After the notifying thread has released the

monitor, the waiting thread will be resurrected and will

reacquire the monitor.

A graphical depiction of the kind of monitor used

by a Java virtual machine is shown in Figure. This figure

shows the monitor as three rectangles. In the center, a large

rectangle contains a single thread, the monitor's owner. On

the left, a small rectangle contains the entry set. On the

right, another small rectangle contains the wait set. Active

threads are shown as dark gray circles. Suspended threads

are shown as light gray circles.

A Java monitor is a specialized class that is used to

encapsulate application specific thread synchronization

logic in a Java program. This class consists of one or more

synchronized methods, each of which is a critical section of

the monitor and guarded by a single lock object. This lock

object is implicitly acquired and released each time a thread

enters and exits a critical section. A model of a Java monitor

can be seen in Figure.

Model of a Java Monitor

Once a thread is executing in a synchronized

method of the monitor, all other

threads attempting to execute a synchronized method must

wait in the monitor’s entry. A thread that has entered a

critical section, may exit the critical section either by

successful completion of its method or by making a call to

one of the wait primitives. If a wait primitive is called, the

thread must release its lock after which it is moved to the

monitor’s wait queue. After a thread releases its lock and

exits the critical section, a thread is selected from the entry

queue, allowing it to acquire the lock and enter the critical

section. For a threads to exit the wait queue, another thread

executing in a critical section must make a notify or

notifyAll primitive call. If the wait queue is not empty at

the time these calls are made, one or more threads are

moved from the wait queue to the entry queue before

execution resumes in the calling thread. This type of

signaling discipline is known as signal-and-continue. The

only difference between these primitives is that the notify

call will result in the selection of a random thread from the

wait queue, while a notifyAll call affects all threads in the

wait queue. It is also possible for a thread to exit the wait

queue if it called a wait primitive with a timeout argument.

In this event, if the thread is still waiting after the timeout

period has expired, it will be moved to the entry queue. We

will not address this type of wait primitive in our approach.

Condition variable queues: There may be any number of

condition variable queues for a given monitor. Each queue

has associated wait and notify methods for putting tasks in

the queue and taking them out.

The Entry queue: Each monitor has one entry queue. When

a task attempts to access a monitor method from outside

the monitor, it is put in the monitor’s entry queue.

The Signaller queue: Each monitor has one signaller

queue. When a task performs a notify, it is put in this

queue.

The Waiting queue: Each monitor has one waiting queue.

When a task is removed from one of the condition variable

queues, it is put in this waiting queue.

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Monitors: a language construct

 Monitors are a programming language construct

 Anonymous lock issues handled by compiler and

OS

 Detection of invalid accesses to critical sections

happens at compile time

 Process of detection can be automated by compiler

by scanning the text of the program

An Abstract Monitor

name: monitor

 …local declarations

 …initialize local data

proc1 (…parameters)

 …statement list

 proc2 (…parameters)

…statement list

 proc3 (…parameters)

 …statement list

3. Monitor Example

car: monitor //monitor declaration

 occupied: Boolean; occupied := false; //local variables /

initializations

 nonOccupied: condition;

 procedure enterCar() //procedure

if occupied then nonOccupied.wait;

 occupied = true;

 procedure exitCar() //procedure

 occupied = false;

 nonOccupied.signal;

Problems solved by monitors

 Mutual exclusion

 Encapsulation of data

 Compiler can automatically scan program text for

some types of synchronization

 bugs

 Synchronization of shared data access simplified

vs. semaphores and locks

 Good for problems that require course granularity

 Invariants are guaranteed after waits

o Theoretically, a process that waits on a condition

doesn’t have to retest the condition when it is

awakened.

4. Advantages of Monitor

 Data access synchronization simplified (vs.

semaphores or locks)

 Better encapsulation

5. Proposed Work

 So my proposed work suggests we can achieve real

multitasking, multiprocessing, multithreading by creating

number of monitors for object which will execute multiple

threads at a time.

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A "ready" or "waiting" process has been loaded

into main memory and is awaiting execution on a CPU (to

be context switched onto the CPU by the dispatcher, or

short-term scheduler). There may be many "ready"

processes at any one point of the systems execution ,all

other "concurrently executing" processes will be waiting for

execution. A ready queue is used in computer scheduling.

Modern computers are capable of running many different

programs or processes at the same time. Processes that are

ready for the CPU are kept in a queue for "ready" processes.

Other processes that are waiting for an event to occur, such

as loading information from a hard drive or waiting on an

internet connection are not in the ready queue, they are

putted in waiting queue.

Mapping Unit will map each and every process to

corresponding monitor and will make the entry in Monitor

Table. All the monitor objects will communicate with each

other for updated data by using Message Passing.

 Fig: Workflow Diagram

6. Conclusion

Even though monitor is a higher level, easier to use

abstraction, better encapsulation as compare to

semaphores/locks. It has several drawbacks like in

conventional multitasking, multiprocessing, multithreading

at a time only one process is able to use the object’s

monitor. So problem arises when more than one processes

needs to access same monitor at the same time. Because of

this we are not getting actual multitasking.

Using this framework process will get required

monitor whenever needed because we have created

multiple monitors of an object. So the proposed work

suggests we can achieve real multitasking, multiprocessing,

multithreading by creating number of monitors for object

which will used by multiple threads or processes at the

same time.By creating a number of monitors real

multitasking, multiprocessing, multithreading achieved

with faster speed.

7. References

 “Monitors: An Operating System Structuring Concept,”

Hoare.

 Modern Operating Systems, Second Edition,

Tannenbaum, pp. 115-119.

http://en.wikipedia.org/wiki/Primary_storage
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Run_queue
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Queue_(data_structure)

International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Jon Walpole, correspondence.

 Emerson Murphy-Hill presentation from CS533,

Winter 2005

 http://en.wikipedia.org/wiki/C._A._R._Hoare

Mr. M. S. Sonawane

Asst. Professor
Institute of Management Research and Development, Near

Karwand Naka, Shirpur
Dist-Dhule (MH)

manojkumar.sonawane@rediffmail.com

